
Lecture 18-19 on Nov. 25 2013

These two lectures are devoted to studying the integral

1

2πi

∫
γ

f ′(z)

f(z)
dz,

where γ is a simple curve enclosing the region Ω. The readers are referred to the figure 1 in the pdf file the
graph of lecture 18-19. In fact when f(z) = z, we know that this integral gives us the so called index of 0
with respect to the curve γ. Since our curve γ is simple, the index is either 1 or −1 for all points in Ω. In
the following arguments, we always assume that γ is positively oriented so that the index of all points inside
Ω equal to 1 with respect to the curve γ. We also assume that f(z) in the study is not a constant function
and moreover f 6= 0 on the curve γ. With this assumption, we know that f(z) can be factorized by

f(z) = (z − z1)(z − z2)...(z − zn)g(z), (0.1)

where g(z) is analytic in Ω and g(z) 6= 0 for all z in Ω. From (0.1), we see that z1, ...zn are n zeros of
f . According to Theorem 0.7 in lecture note 17, we know that f can have only finitely many zeros in Ω.
Therefore by removability of singularity theorem, one can easily show that (0.1) holds.

By (0.1), we calculate

f ′(z)

f(z)
=

1

z − z1
+ ...+

1

z − zn
+
g′(z)

g(z)
.

Therefore by the definition of index and Cauchy-Gousat theorem, one can easily show that

1

2πi

∫
γ

f ′(z)

f(z)
dz = n(z1, γ) + ...+ n(zn, γ) = 1 + ...+ 1 = n.

Therefore if γ is positively oriented,

1

2πi

∫
γ

f ′(z)

f(z)
dz = Total number of zeros of f in Ω. (0.2)

We can make two generalizations of (0.2).

First Generalization: Assume F (z) = f(z) − a where a is a complex number so that f 6= a on γ.
By (0.2), we have

1

2πi

∫
γ

f ′(z)

f(z)− a
=

1

2πi

∫
γ

F ′(z)

F (z)
= Total number of zeros of F in Ω.

Clearly the zeors of F in Ω are all solutions of the equation f = a in Ω. Therefore we have

1

2πi

∫
γ

f ′(z)

f(z)− a
= Total number of solutions of the equation f = a in Ω. (0.3)

Second Generalization: Assume

f(z) =
F (z)

G(z)
,

where F (z) and G(z) are two analytic functions in Ω. Suppose that both F and G have no zeros on γ. By
trivial calcuations, we know that

f ′(z)

f(z)
=
F ′(z)

F (z)
− G′(z)

G(z)
.
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Applying (0.2), we show that

1

2πi

∫
γ

f ′(z)

f(z)
= (Total number of zeros of F in Ω)− (Total number of zeros of G in Ω). (0.4)

Now we are going to explore some applications of these two generalizations.

Application of the First Generalization. Assume f(z0) = a where z0 is a point in Ω. By the iso-
lation of zeros, we can shrink γ a little bit so that in Ω there is only one solution of the equation f(z) = a.
That is z0. Therefore we know by (0.3) that

1

2πi

∫
γ

f ′(z)

f(z)− a
= Total number of solutions of the equation f = a.

Must the right-hand side of the above equality equal to 1 since we have only one solution of f = a in Ω ?
Let us take a look at the Taylor expansion of f near z0. By Taylor expansion, we know that

f(z) = f(z0) + f ′(z0)(z − z0) + ...+
f (k)(z0)

k!
(z − z0)k + gk+1(z)(z − z0)k+1.

Since we assume that f is not a constant, there must be a k so that for all i < k and i > 0, the derivatives
f (i)(z0) = 0 but f (k)(z0) 6= 0. Therefore it holds

f(z) = f(z0) + (z − z0)k
(
f (k)(z0)

k!
+ gk+1(z − z0)

)
Set

hk+1 =
f (k)(z0)

k!
+ gk+1(z − z0).

clearly when z is close to z0, hk+1(z) 6= 0. Therefore we know that

f(z)− a = (z − z0)khk+1. (0.5)

Moreover

f ′(z)

f(z)− a
=

k

z − z0
+
h′k+1

hk+1
.

Now if we require γ is sufficiently close to z0, then

1

2πi

∫
γ

f ′(z)

f(z)− a
= k.

This k could be different from 1 since from (0.5), even though we have just one solution of f = a, but this
solution z0 could be repeated by k times. In the future, we call k the multicity of z0 with respect to the
equation f = a. With the above arguments, we know that

1

2πi

∫
γ

f ′

f − a

counts the total number of solutions of f = a. Repeated solutions will also be counted.

Now we fix γ sufficiently close to z0 so that z0 is the isolated solution of the equation f = a. If we assume
b sufficiently close to a, then clearly

1

2πi

∫
γ

f ′

f − b
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is sufficiently close to

1

2πi

∫
γ

f ′

f − a

But these two numbers are all integers. So we know that

1

2πi

∫
γ

f ′

f − b
=

1

2πi

∫
γ

f ′

f − a
, provided that b is sufficiently close to a. (0.6)

With (0.6), we can prove the following maximum mudulus theorem

Theorem 0.1 (Maximum Modulus Theorem). If f is not a constant function on Ω, then the maximum
value of |f(z)| can only be attained on the boundary of Ω. That is γ.

Proof. Choose z0 in Ω and assume |f(z0)| attains the maximum value of |f(z)| in Ω. Clearly

f(z0) 6= 0.

otherwise, f(z) = 0 for all z in Ω. Using Taylor expansion, we know that

f(z) = f(z0) + (z − z0)kg(z), (0.7)

where g(z) 6= 0 in |z − z0| < ε. Here ε is a small positive constant. The equation

(z − z0)kg(z) = 0

has k repeated solutions in |z − z0| < ε. Therefore by (0.6), we know that

(z − z0)kg(z) = δf(z0),

also has k solutions in |z − z0| < ε. Here δ is a positive number sufficiently small. Fixing z∗ in |z − z0| < ε
so that (z∗ − z0)kg(z∗) = δf(z0). Therefore we know by (0.7) that

f(z∗) = f(z0) + (z∗ − z0)kg(z∗) = f(z0) + δf(z0) = (1 + δ)f(z0).

therefore we know that |f(z∗)| = (1 + δ)|f(z0)| > |f(z0)|. A contradiction. So the maximum modulus of f
can never be attained in Ω if f is not a constant.

Now we see how to apply Theorem 0.1.

Example 1. The lemma of Schwartz.

Proposition 0.2. Assume f is analytic in |z| < 1. |f(z)| ≤ 1 for all z in |z| < 1. Furthermore we suppose
that f(0) = 0. Then with the above assumption, it holds

|f(z)| ≤ |z|, for all z in |z| < 1.

If |f(z∗)| = |z∗| for some z∗ in |z| < 1, then f(z) = cz for all z in |z| < 1. Here c is a constant with |c| = 1.

Proof. Step 1. define g(z) = f(z)/z. This function is analytic in 0 < |z| < 1. By Removability of singularity,
we know that g is analytic in |z| < 1;

Step 2. Choosing an arbitrary r < 1 and apply the maximum modulus theorem to g with the Ω = {|z| ≤ r}.
Clearly we know that ∣∣∣∣f(z)

z

∣∣∣∣ ≤ max
w on |z| = r

∣∣∣∣f(w)

w

∣∣∣∣ ≤ 1

r
−→ 1, as r → 1.

This shows that |f(z)| ≤ |z|;

Step 3. If there is z∗ so that |f(z∗)| = |z∗| , then by Theorem 0.1, f(z)/z must be a constant. There-
fore f(z) = cz. clearly |c| = 1 since |f(z∗)| = |z∗|.
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Application of the Second Generalization. To apply the second generalization, we need take a close
look at the integral

1

2πi

∫
γ

f ′(z)

f(z)
dz.

Assume z(t) is one parametrization of γ with t defined on [a, b]. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

f ′(z(t))

f(z(t))
z′(t)dt =

1

2πi

∫ b

a

(f(z(t)))′

f(z(t))
dt.

In the second inequality, the chain rule is applied. Assume w(t) = f(z(t)). Therefore the above integral can
be rewritten as

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

w′(t)

w(t)
dt =

1

2πi

∫
Γ=f(γ)

1

w
dw = n(0,Γ).

Combing the above calculations with (0.4), we know that

Proposition 0.3 (Argument Principle). if f = F/G, then

n(0,Γ) = (Total number of zeros of F in Ω)− (Total number of zeros of G in Ω).

Here Γ = f(γ).

Proposition 0.3 has a straightforward corollary.

Theorem 0.4 (Rouche’s theorem). If |g− f | < |f | on γ, then f and g have the same number of zeros in Ω.

Proof. Clearly by the above assume f 6= 0 on γ and moreover g 6= 0 on γ too. Consider g/f . By Proposition
0.3, we know that

n(0, (g/f)(γ)) = (Total number of zeros of g in Ω)− (Total number of zeros of f in Ω). (0.8)

According to our assumption,

|(g/f)(z)− 1| < 1, for all z on γ.

In other words, (g/f)(γ) is inside the ball |w − 1| < 1. But 0 is not in this ball, therefore we conclude that
n(0,Γ) = 0. This implies that

(Total number of zeros of g in Ω) = (Total number of zeros of f in Ω).

Example 2. How many roots of g(z) = z8 − 8z6 + z3 + z2 + 2 lie inside the unit disk |z| < 1.

Solution: Letting f(z) = −8z6, we know that

|g(z)− f(z)| = |z8 + z3 + z2 + 2| ≤ 5, on |z| = 1.

But |f | = 8 on |z| = 1. Therefore we have |g − f | < |f | on |z| = 1. By Rouche’s theorem, there are 6 roots
of g inside |z| < 1 since f(z) = 0 has six roots in |z| < 1. Notice here f in fact has six repeated roots. The
multicity has to be counted.

Example 3. How many roots of the polynomial g(z) = z4 + 3z2 + 8z + 2 lie on the right-half plane.
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Solution: Construct the contour γR by the following way. The first part of γR contains all points on
the pure imaginary line between −Ri and Ri. The second part contains all points on the right-half of the
circle |z| = R. We choose positive orientation of γR and denote by I the set of points on the first part. and
II the set of points on the second part. The readers are referred to the figure 2 in the graph file. By the
argument principle in Proposition 0.3, we know that the total number of zeros of g equals to n(0, g(γR))
when R is large enough.

the image of I under the mapping g. Assume I is parametrized by ti where t is the parameter
from R to −R. Plugging into g, we know that

g(ti) = (t− 1)(t+ 1)(t−
√

2)(t+
√

2) + 8ti.

The image of I under the mapping g is shown in figure 3. Clearly the total change of arguments equals to

−2arctan

(
8R

(R− 1)(R+ 1)(R+
√

2)(R−
√

2)

)
−→ 0, as R→∞.

Therefore while R is large enough, the change of arguments on part I is very small.

the image of II under the mapping g. Assume II is parametrizaed by Reiθ where θ runs from
−π/2 to π/2. Therefore

g(Reiθ) = R4ei4θ + 3R2ei2θ + 8Reiθ + 2 = R4
(
ei4θ + 3R−2ei2θ + 8R−3eiθ + 2R−4

)
.

Noting that ei4θ + 3R−2ei2θ + 8R−3eiθ + 2R−4 is a small perturbation of ei4θ while R→∞. Therefore the
total change of argument from part II equals to 4π while R→∞. Therefore the total change of argument
along g(γR) equals to 4π while R → ∞. The index n(0, g(γR)) = 4π/2π = 2 while R is large enough. So
there are 2 roots of g on the right-half plane.
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