Lecture 18-19 on Nov. 252013

These two lectures are devoted to studying the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z
$$

where γ is a simple curve enclosing the region Ω. The readers are referred to the figure 1 in the pdf file the graph of lecture 18-19. In fact when $f(z)=z$, we know that this integral gives us the so called index of 0 with respect to the curve γ. Since our curve γ is simple, the index is either 1 or -1 for all points in Ω. In the following arguments, we always assume that γ is positively oriented so that the index of all points inside Ω equal to 1 with respect to the curve γ. We also assume that $f(z)$ in the study is not a constant function and moreover $f \neq 0$ on the curve γ. With this assumption, we know that $f(z)$ can be factorized by

$$
\begin{equation*}
f(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) g(z) \tag{0.1}
\end{equation*}
$$

where $g(z)$ is analytic in Ω and $g(z) \neq 0$ for all z in Ω. From (0.1), we see that $z_{1}, \ldots z_{n}$ are n zeros of f. According to Theorem 0.7 in lecture note 17 , we know that f can have only finitely many zeros in Ω. Therefore by removability of singularity theorem, one can easily show that (0.1) holds.

By (0.1), we calculate

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-z_{1}}+\ldots+\frac{1}{z-z_{n}}+\frac{g^{\prime}(z)}{g(z)}
$$

Therefore by the definition of index and Cauchy-Gousat theorem, one can easily show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=n\left(z_{1}, \gamma\right)+\ldots+n\left(z_{n}, \gamma\right)=1+\ldots+1=n
$$

Therefore if γ is positively oriented,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\text { Total number of zeros of } f \text { in } \Omega \tag{0.2}
\end{equation*}
$$

We can make two generalizations of (0.2).
First Generalization: Assume $F(z)=f(z)-a$ where a is a complex number so that $f \neq a$ on γ. By (0.2), we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-a}=\frac{1}{2 \pi i} \int_{\gamma} \frac{F^{\prime}(z)}{F(z)}=\text { Total number of zeros of } F \text { in } \Omega
$$

Clearly the zeors of F in Ω are all solutions of the equation $f=a$ in Ω. Therefore we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-a}=\text { Total number of solutions of the equation } f=a \text { in } \Omega \tag{0.3}
\end{equation*}
$$

Second Generalization: Assume

$$
f(z)=\frac{F(z)}{G(z)}
$$

where $F(z)$ and $G(z)$ are two analytic functions in Ω. Suppose that both F and G have no zeros on γ. By trivial calcuations, we know that

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{F^{\prime}(z)}{F(z)}-\frac{G^{\prime}(z)}{G(z)}
$$

Applying (0.2), we show that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)}=(\text { Total number of zeros of } F \text { in } \Omega)-(\text { Total number of zeros of } G \text { in } \Omega) \tag{0.4}
\end{equation*}
$$

Now we are going to explore some applications of these two generalizations.
Application of the First Generalization. Assume $f\left(z_{0}\right)=a$ where z_{0} is a point in Ω. By the isolation of zeros, we can shrink γ a little bit so that in Ω there is only one solution of the equation $f(z)=a$. That is z_{0}. Therefore we know by (0.3) that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-a}=\text { Total number of solutions of the equation } f=a
$$

Must the right-hand side of the above equality equal to 1 since we have only one solution of $f=a$ in Ω ? Let us take a look at the Taylor expansion of f near z_{0}. By Taylor expansion, we know that

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\ldots+\frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}+g_{k+1}(z)\left(z-z_{0}\right)^{k+1}
$$

Since we assume that f is not a constant, there must be a k so that for all $i<k$ and $i>0$, the derivatives $f^{(i)}\left(z_{0}\right)=0$ but $f^{(k)}\left(z_{0}\right) \neq 0$. Therefore it holds

$$
f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right)^{k}\left(\frac{f^{(k)}\left(z_{0}\right)}{k!}+g_{k+1}\left(z-z_{0}\right)\right)
$$

Set

$$
h_{k+1}=\frac{f^{(k)}\left(z_{0}\right)}{k!}+g_{k+1}\left(z-z_{0}\right)
$$

clearly when z is close to $z_{0}, h_{k+1}(z) \neq 0$. Therefore we know that

$$
\begin{equation*}
f(z)-a=\left(z-z_{0}\right)^{k} h_{k+1} . \tag{0.5}
\end{equation*}
$$

Moreover

$$
\frac{f^{\prime}(z)}{f(z)-a}=\frac{k}{z-z_{0}}+\frac{h_{k+1}^{\prime}}{h_{k+1}} .
$$

Now if we require γ is sufficiently close to z_{0}, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-a}=k
$$

This k could be different from 1 since from (0.5), even though we have just one solution of $f=a$, but this solution z_{0} could be repeated by k times. In the future, we call k the multicity of z_{0} with respect to the equation $f=a$. With the above arguments, we know that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f-a}
$$

counts the total number of solutions of $f=a$. Repeated solutions will also be counted.
Now we fix γ sufficiently close to z_{0} so that z_{0} is the isolated solution of the equation $f=a$. If we assume b sufficiently close to a, then clearly

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f-b}
$$

is sufficiently close to

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f-a}
$$

But these two numbers are all integers. So we know that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f-b}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f-a}, \quad \text { provided that } b \text { is sufficiently close to } a \tag{0.6}
\end{equation*}
$$

With (0.6), we can prove the following maximum mudulus theorem
Theorem 0.1 (Maximum Modulus Theorem). If f is not a constant function on Ω, then the maximum value of $|f(z)|$ can only be attained on the boundary of Ω. That is γ.

Proof. Choose z_{0} in Ω and assume $\left|f\left(z_{0}\right)\right|$ attains the maximum value of $|f(z)|$ in Ω. Clearly

$$
f\left(z_{0}\right) \neq 0
$$

otherwise, $f(z)=0$ for all z in Ω. Using Taylor expansion, we know that

$$
\begin{equation*}
f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right)^{k} g(z) \tag{0.7}
\end{equation*}
$$

where $g(z) \neq 0$ in $\left|z-z_{0}\right|<\epsilon$. Here ϵ is a small positive constant. The equation

$$
\left(z-z_{0}\right)^{k} g(z)=0
$$

has k repeated solutions in $\left|z-z_{0}\right|<\epsilon$. Therefore by (0.6), we know that

$$
\left(z-z_{0}\right)^{k} g(z)=\delta f\left(z_{0}\right)
$$

also has k solutions in $\left|z-z_{0}\right|<\epsilon$. Here δ is a positive number sufficiently small. Fixing z_{*} in $\left|z-z_{0}\right|<\epsilon$ so that $\left(z_{*}-z_{0}\right)^{k} g\left(z_{*}\right)=\delta f\left(z_{0}\right)$. Therefore we know by (0.7) that

$$
f\left(z_{*}\right)=f\left(z_{0}\right)+\left(z_{*}-z_{0}\right)^{k} g\left(z_{*}\right)=f\left(z_{0}\right)+\delta f\left(z_{0}\right)=(1+\delta) f\left(z_{0}\right)
$$

therefore we know that $\left|f\left(z_{*}\right)\right|=(1+\delta)\left|f\left(z_{0}\right)\right|>\left|f\left(z_{0}\right)\right|$. A contradiction. So the maximum modulus of f can never be attained in Ω if f is not a constant.

Now we see how to apply Theorem 0.1.

Example 1. The lemma of Schwartz.

Proposition 0.2. Assume f is analytic in $|z|<1 .|f(z)| \leq 1$ for all z in $|z|<1$. Furthermore we suppose that $f(0)=0$. Then with the above assumption, it holds

$$
|f(z)| \leq|z|, \quad \text { for all } z \text { in }|z|<1
$$

If $\left|f\left(z_{*}\right)\right|=\left|z_{*}\right|$ for some z_{*} in $|z|<1$, then $f(z)=c z$ for all z in $|z|<1$. Here c is a constant with $|c|=1$.
Proof. Step 1. define $g(z)=f(z) / z$. This function is analytic in $0<|z|<1$. By Removability of singularity, we know that g is analytic in $|z|<1$;

Step 2. Choosing an arbitrary $r<1$ and apply the maximum modulus theorem to g with the $\Omega=\{|z| \leq r\}$. Clearly we know that

$$
\left|\frac{f(z)}{z}\right| \leq \max _{w \text { on }|z|=r}\left|\frac{f(w)}{w}\right| \leq \frac{1}{r} \longrightarrow 1, \quad \text { as } r \rightarrow 1
$$

This shows that $|f(z)| \leq|z|$;
Step 3. If there is z_{*} so that $\left|f\left(z_{*}\right)\right|=\left|z_{*}\right|$, then by Theorem $0.1, f(z) / z$ must be a constant. Therefore $f(z)=c z$. clearly $|c|=1$ since $\left|f\left(z_{*}\right)\right|=\left|z_{*}\right|$.

Application of the Second Generalization. To apply the second generalization, we need take a close look at the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z
$$

Assume $z(t)$ is one parametrization of γ with t defined on $[a, b]$. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\frac{1}{2 \pi i} \int_{a}^{b} \frac{f^{\prime}(z(t))}{f(z(t))} z^{\prime}(t) \mathrm{d} t=\frac{1}{2 \pi i} \int_{a}^{b} \frac{(f(z(t)))^{\prime}}{f(z(t))} \mathrm{d} t
$$

In the second inequality, the chain rule is applied. Assume $w(t)=f(z(t))$. Therefore the above integral can be rewritten as

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\frac{1}{2 \pi i} \int_{a}^{b} \frac{w^{\prime}(t)}{w(t)} \mathrm{d} t=\frac{1}{2 \pi i} \int_{\Gamma=f(\gamma)} \frac{1}{w} \mathrm{~d} w=n(0, \Gamma)
$$

Combing the above calculations with (0.4), we know that
Proposition 0.3 (Argument Principle). if $f=F / G$, then

$$
n(0, \Gamma)=(\text { Total number of zeros of } F \text { in } \Omega)-(\text { Total number of zeros of } G \text { in } \Omega)
$$

Here $\Gamma=f(\gamma)$.
Proposition 0.3 has a straightforward corollary.
Theorem 0.4 (Rouche's theorem). If $|g-f|<|f|$ on γ, then f and g have the same number of zeros in Ω.
Proof. Clearly by the above assume $f \neq 0$ on γ and moreover $g \neq 0$ on γ too. Consider g / f. By Proposition 0.3 , we know that

$$
\begin{equation*}
n(0,(g / f)(\gamma))=(\text { Total number of zeros of } g \text { in } \Omega)-(\text { Total number of zeros of } f \text { in } \Omega) \tag{0.8}
\end{equation*}
$$

According to our assumption,

$$
|(g / f)(z)-1|<1, \quad \text { for all } z \text { on } \gamma
$$

In other words, $(g / f)(\gamma)$ is inside the ball $|w-1|<1$. But 0 is not in this ball, therefore we conclude that $n(0, \Gamma)=0$. This implies that
(Total number of zeros of g in $\Omega)=($ Total number of zeros of f in Ω).

Example 2. How many roots of $g(z)=z^{8}-8 z^{6}+z^{3}+z^{2}+2$ lie inside the unit disk $|z|<1$.
Solution: Letting $f(z)=-8 z^{6}$, we know that

$$
|g(z)-f(z)|=\left|z^{8}+z^{3}+z^{2}+2\right| \leq 5, \quad \text { on }|z|=1
$$

But $|f|=8$ on $|z|=1$. Therefore we have $|g-f|<|f|$ on $|z|=1$. By Rouche's theorem, there are 6 roots of g inside $|z|<1$ since $f(z)=0$ has six roots in $|z|<1$. Notice here f in fact has six repeated roots. The multicity has to be counted.

Example 3. How many roots of the polynomial $g(z)=z^{4}+3 z^{2}+8 z+2$ lie on the right-half plane.

Solution: Construct the contour γ_{R} by the following way. The first part of γ_{R} contains all points on the pure imaginary line between $-R i$ and $R i$. The second part contains all points on the right-half of the circle $|z|=R$. We choose positive orientation of γ_{R} and denote by I the set of points on the first part. and $I I$ the set of points on the second part. The readers are referred to the figure 2 in the graph file. By the argument principle in Proposition 0.3 , we know that the total number of zeros of g equals to $n\left(0, g\left(\gamma_{R}\right)\right)$ when R is large enough.
the image of I under the mapping g. Assume I is parametrized by $t i$ where t is the parameter from R to $-R$. Plugging into g, we know that

$$
g(t i)=(t-1)(t+1)(t-\sqrt{2})(t+\sqrt{2})+8 t i
$$

The image of I under the mapping g is shown in figure 3. Clearly the total change of arguments equals to

$$
-2 \arctan \left(\frac{8 R}{(R-1)(R+1)(R+\sqrt{2})(R-\sqrt{2})}\right) \longrightarrow 0, \quad \text { as } R \rightarrow \infty
$$

Therefore while R is large enough, the change of arguments on part I is very small.
the image of $I I$ under the mapping g. Assume $I I$ is parametrizaed by $R e^{i \theta}$ where θ runs from $-\pi / 2$ to $\pi / 2$. Therefore

$$
g\left(R e^{i \theta}\right)=R^{4} e^{i 4 \theta}+3 R^{2} e^{i 2 \theta}+8 R e^{i \theta}+2=R^{4}\left(e^{i 4 \theta}+3 R^{-2} e^{i 2 \theta}+8 R^{-3} e^{i \theta}+2 R^{-4}\right) .
$$

Noting that $e^{i 4 \theta}+3 R^{-2} e^{i 2 \theta}+8 R^{-3} e^{i \theta}+2 R^{-4}$ is a small perturbation of $e^{i 4 \theta}$ while $R \rightarrow \infty$. Therefore the total change of argument from part $I I$ equals to 4π while $R \rightarrow \infty$. Therefore the total change of argument along $g\left(\gamma_{R}\right)$ equals to 4π while $R \rightarrow \infty$. The index $n\left(0, g\left(\gamma_{R}\right)\right)=4 \pi / 2 \pi=2$ while R is large enough. So there are 2 roots of g on the right-half plane.

